Comparative evaluation of the content and structure of communication using two handoff tools: Implications for patient safety☆,☆,★,★★

Joanna Abraham, PhD a,⁎, Thomas G. Kannampallil, BS b, Khalid F. Almoosa, MD, MS c, Bela Patel, MD c, Vimla L. Patel, PhD, DSc b

a Department of Biomedical and Health Information Sciences, College of Applied Health Sciences, University of Illinois, Chicago, IL
c Department of Internal Medicine, Division of Critical Care Medicine, University of Texas Health Science Center, Houston, TX

Purpose: Handoffs vary in their structure and content, raising concerns regarding standardization. We conducted a comparative evaluation of the nature and patterns of communication on 2 functionally similar but conceptually different handoff tools: Subjective, Objective, Assessment and Plan, based on a patient problem-based format, and Handoff Intervention Tool (HAND-IT), based on a body system-based format.

Method: A nonrandomized pre-post prospective intervention study supported by audio recordings and observations of 82 resident handoffs was conducted in a medical intensive care unit. Qualitative analysis was complemented with exploratory sequential pattern analysis techniques to capture the characteristics and types of communication events (CEs) and breakdowns.

Results: Use of HAND-IT led to fewer communication breakdowns (F1,80 = 45.66; P < .0001), greater number of CEs (FAB = 4.56; P < .001), with more ideal CEs than Subjective, Objective, Assessment and Plan (FAB = 9.27; P < .001). In addition, the use of HAND-IT was characterized by more request-response CE transitions.

Conclusion: The HAND-IT’s body system-based structure afforded physicians the ability to better organize and comprehend patient information and led to an interactive and streamlined communication, with limited external input. Our results also emphasize the importance of information organization using a medical knowledge hierarchical format for fostering effective communication.

© 2014 Elsevier Inc. All rights reserved.
[26–30]. Although most handoff tools use the problem-based model as a mechanism for structuring communication [24,31], the system-based tools have been used sparingly for supporting handoffs [32]. Despite such efforts, several researchers have highlighted shortcomings in the development and evaluation of handoff tools based on these frameworks [33–36]. For example, problem-based tools have been criticized for their open-ended yet limiting structure of content organization, which increases the potential risk for information loss and inconsistencies in communication.

Although there are several research studies that report on the various types of handoff tools, there is limited research on (a) the differences in the patterns of communication fostered by different handoff tools and (b) the impact of these differences on handoff communication breakdowns. Our research objective is to compare the effectiveness of the nature and patterns of communication using 2 functionally similar but conceptually different handoff communication structures: a patient problem-based model and a body system-based model. To compare the effectiveness of communication afforded by 2 content models, we evaluated a problem-based, Subjective, Objective, Assessment and Plan (SOAP) and an indigenously developed, system-based HANDOlf Intervention Tool (HAND-IT) [37]. Our methodological approach contrasts with prior evaluation studies on handoff tools that have primarily used survey-based and self-reported measures [17,23,32,38,39]. We focus on the analysis of the content of communication and the inherent communication breakdowns during these interactions. Communication breakdowns represent the gaps in available information and provide a systematic basis for evaluating the impact of the tool structure on communication effectiveness.

2. Method

This study was part of a larger study involving the evaluation of handoffs in critical care settings. This article focuses on the comparative evaluation of 2 handoff tools: SOAP and HAND-IT.

2.1. Study setting

The study was conducted in a 16-bed, closed medical intensive care unit (MICU) of an urban academic hospital in Texas with approximately 55,000 emergency department visits per year. Patients in this unit stayed for an average of 4 days and required multiple handoffs (additional details in Section 3 of Appendix A).

2.2. Handoff tools used for evaluation

The SOAP uses the problem-based information organizational format that includes subjective information (e.g., patient history), objective information (e.g., vital signs), assessment information (e.g., differential diagnosis), and plan-related information (e.g., new procedures, orders). A detailed description can be found in the Appendix A (see Section 2).

The HAND-IT was designed and developed at this research site as part of a multiyear longitudinal study that evaluated the overall handoff process [40,41]. The tool content was structured based on the body system model that mirrors the medical school training curriculum [42] in supporting standardization of content [43]. The order of the body system information is based on importance and relevance to critical care workflow: pulmonary, cardiovascular, infectious disease, renal/genitourinary, gastrointestinal/liver/nutrition, neurology, endocrinology, and hematology. The fundamental content categories are organized in a checklist format that includes physical examination/laboratories, medications, problem list, assessment, and plan and system diagnosis for each body system. Furthermore, we included categories such as patient admission, pending tasks, and important management events during the past shift and contingency plan to support summarization through patient case narratives. A detailed description can be found in the Appendix A (see Section 2).

2.3. Physician handoffs in MICU

As there was no formal resident “sign-out” procedure at the study site, morning rounds were used for handoffs between resident teams. During these group handoffs, an outgoing team (resident and/or intern) presented patient care-related information by verbalizing the written content on a handoff tool to an oncoming team (attending, fellow, resident, and intern). Patient nurses, pharmacists, and respiratory therapists also attended these sessions. The attending physician moderated the discussion, which often involved follow-up questions on the information presented. The rest of the oncoming team played a “passive” role, by interjecting into the discussion when necessary to provide supporting information or clarification [40] (see Section 1 in Appendix A).

2.4. Participants

There were 10 participants over the study period of 2 months: 2 attending physicians, 4 interns, and 4 residents. The participants were divided into 2 teams: each team was in the MICU for a period of 1 month and consisted of 5 core participants who participated in the rounds for that entire month (1 attending, 2 residents [PCY 2/3], and 2 interns [PCY 1]). In addition to this, there were 2 fellows, 12 nurses, 2 registered respiratory therapists, and 6 medical students who participated in the rounds. Each intern/resident was responsible for up to 8 patients at a time. A total of 82 individual handoffs were conducted across both tools (41 for each handoff tool). The institutional review board of the hospital and university approved the study, and written consents were obtained from all participants.

2.5. Study design

We used a nonrandomized pre-post prospective intervention study to compare the effectiveness of communication between 2 handoff tools. In the first month, team 1 (5 participants: 1 attending, 2 residents, and 2 interns) used SOAP for 4 days as part of their training, followed by 2 days of testing. Immediately after this, team 1 used HAND-IT for 4 days as part of their training, followed by 2 days of testing. In the second month, the tools were presented to team 2 (a new set of 5 participants: 1 attending, 2 residents, and 2 interns) in the reverse order for counterbalancing the effects of tool use. The training period helped the participants become introduced to and familiarized with the information content and structure of the tool. This also helped them understand the information categories that were required from various information sources and the information expectations of the oncoming team. Data for analysis were collected only during the testing days (additional details can be found in Section 3 in Appendix A).

2.6. Data collection

Data collection involved audio recording of interactions during handoffs. The first author took copious field notes on the contextual features underlying these communication exchanges. A total of 96 hours of data were collected. Handoffs during morning rounds commenced around 8 AM and lasted approximately 4 to 5 hours. The MICU team moved around the unit as they progressed through the list.

1 Although residents were primarily in charge of all the patients in the unit, interns were allocated half of the MICU patients to their care. This allocation was based on a number of factors including patient criticality and intern expertise.
of patients. There were 41 patient handoffs over 4 days using SOAP
(mean, 10.25/day; SD, 3.51) and 41 patient handoffs over 4 days using
HAND-IT (mean, 10.25/day; SD, 2.22). All data were transcribed
verbatim for further coding and analysis.

2.7. Data analysis: qualitative

Qualitative analysis was based on a structured handoff communication
framework that captured the communication events (CEs) [10] and
breakdowns. This framework was developed and validated in a
previous study [40,41]. The framework reflects the evolution and
progression of the “process” of handoff communication activity and
accounts for the nature and distribution of the communicative events
that unfold during the conversation, the communication breakdowns
during these interactions, and the roles played by the different
participants.

The framework (Fig. 1) captures the communicative exchanges
between a sender (ie, outgoing resident/intern) and a receiver (ie,
oncoming attending) and the rest of the team including oncoming
fellow and resident/intern (and other participants during rounds).
The sender presents information that is evaluated by the receiver (ie,
attending) for accuracy and completeness. The attending physician
makes 1 of 3 decisions based on the initial presentation: accept, reject,
or request information. If the decision choice is accept, then presented
information is accepted toward the assessment and plan (A&P). If the
decision choice is reject, then a communication breakdown results
(type 3—inappropriate/irrelevant information presented by the
sender). In such situations, a decision-making cycle is initiated
where multiple options are examined and evaluated against the
criteria, and a suitable decision option is selected. If the decision
choice is request additional information, then the sender (ie, outgoing
resident) can respond with additional information, which is further
evaluated. If the additional information is accurate and sufficient, it is
accepted by the attending physician and added to A&P (referred to as
accept 2). If the additional information provided is inaccurate or
insufficient, it results in a communication breakdown (type 1 or 2); in
such situations, other team members can provide the required
information to address this breakdown. In cases where the team is
able to provide supporting information, it is accepted by the attending
physician and added to A&P (referred to as accept 3). Alternatively, if
the team is unable to provide complete and accurate information, a
team communication breakdown occurs (type 4), forcing the entire
group (oncoming and outgoing teams) into a collaborative problem
solving cycle, which involves seeking, reviewing, and critiquing
information; making sense of it; and applying it back to potentially
address the problem. All verbal transcripts of handoff communication
using both SOAP and HAND-IT were coded using this framework.

2.7.1. Communication events during handoffs

A CE refers to the passing of a message through a channel for a
particular purpose. Based on the framework, communication content
was classified into 8 unique CEs (Table 1). Of these, “present” and
“response” events were always attributed to the sender (ie, resident/
intern), “accept,” “accept 2,” “accept 3,” “request,” and “reject” were
attributed to the attending physician, and “team response” was
attributed to an MICU team member. For clarity, “accept” events after
multiple deliberations were categorized as “accept 2” (secondary
accept) or “accept 3” (tertiary accept).

Communication events were categorized as ideal or nonideal CEs
based on their impact on communication effectiveness and efficiency.
The ideal/nonideal categorization emphasizes the quality of transfer
of information within a noisy channel [44] and must be interpreted
within the handoff communication framework (Fig. 1). Ideal CEs were
instances where information presented by the outgoing team was
sufficient and accurate (including their responses): “present,”
“accept,” “request,” “response,” “accept 2.” In other words, the
presence of more ideal CEs was representative of streamlined
communication with limited extraneous discussions (eg, from the

![Fig. 1. Handoff communication framework that evolves between the sender (resident/intern) and receiver (attending): the framework shows the range of CEs that arise during the process of handoff communication. The figure has been adapted from Abraham et al [40] with permission.](image-url)
team) in response to a communication breakdown. Non-ideal events referred to instances that required information from the team and were representative of a communication breakdown (eg, requested information not provided by the resident): “reject,” “team response,” “accept 3.” Two researchers (JA and TK) coded the data with a high degree of interrater agreement (Cohen κ = 0.972). Interrater reliability was calculated based on TK coding 25% of randomly selected content (equivalent to 2 full transcripts).

2.7.2. Communication breakdowns during handoffs

A communication breakdown is a gap or failure in conveying a message by the sender (or team) to the receiver. These were categorized into 4 types based on the nature of the information gap: incomplete information, inaccurate, and conflicting information; irrelevant information (all from the sender) and incomplete, inaccurate, or irrelevant information from the team (see Table 2).

2.7.3. Clinical nature of communication breakdowns

We further classified the communication breakdowns to ascertain their clinical determinants. We analyzed the specific questions from the receiver that were associated with each of the breakdowns using Ely’s taxonomy of generic clinical questions [45]. The taxonomy was modified to address the information needs of in-patient settings—we did not include the “patient-directed” category, as we did not collect patient-related data (see Table 3).

2.8. Data analysis: quantitative

Once the CEs and breakdowns were categorized, descriptive statistics were computed. t Tests and analysis of variance were used to investigate the differences between the tools in terms of CEs and breakdowns. Given that the members of the team (interns and residents) were at different stages of their training, we also investigated effects of their expertise on CEs and breakdowns.

To capture the nuances and patterns of communicative interactions, we also performed sequential pattern analyses of CEs (see Table 1). A custom software application was developed to retrieve CEs and organize them into a temporal event stream according to the type of tool (SOAP, HAND-IT), time/day of the event, and associated bed number. The event stream was converted into a transition probability matrix (TPM) for further analysis. Transition probability matrix is an antecedent-consequent matrix that provides the frequency of transitions between events. For each cell, the TPM of CEs provides the count of the number of transitions between 2 CEs (eg, between “present” and “accept”). Given the limited understanding regarding patterns of handoff communication, we then used sequential analysis as an exploratory data analysis approach [46] to characterize the nature of temporal patterns of communicative interactions by computing the probability of transitions between the CEs. Researchers have used similar sequential analysis approaches to examine temporal co-occurring patterns of human interaction with tools and artifacts [47–53] (additional details can be found in Section 6 of Appendix A).

3. Results

We report on the differences in the nature and patterns of communication behavior using SOAP and HAND-IT. We report on 4 attributes: communication interactivity, measured by the type/

Table 1

<table>
<thead>
<tr>
<th>Communication events</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>Sender presents patient information</td>
</tr>
<tr>
<td>Accept</td>
<td>Receiver acknowledges and accepts presented information by sender</td>
</tr>
<tr>
<td>Request</td>
<td>Receiver requests for additional information from sender</td>
</tr>
<tr>
<td>Response</td>
<td>Sender responds to the requested information by the receiver</td>
</tr>
<tr>
<td>Accept 2</td>
<td>Conditional accept of response information provided by sender based on its accuracy, relevance and completeness</td>
</tr>
<tr>
<td>Team response</td>
<td>External team responds to the requested information by the receiver</td>
</tr>
<tr>
<td>Accept 3</td>
<td>Conditional accept of response information provided by team based on its accuracy, relevance and completeness</td>
</tr>
<tr>
<td>Reject</td>
<td>Receiver rejects the information presented by the sender for its irrelevance/inappropriateness</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Communication failures</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>Incomplete information (from "sender"): Inability of the outgoing team to provide requested additional information.</td>
<td>Outgoing Resident: So, currently, her sodium is 134, her potassium is 2.9, chloride is 93, Co2 is 25, ...is 7, ...03:25:27 creatinin is 0.6 which is improving to 1.8, glucose is 138, calcium 8.2, phosphorus 60, mag 18, I am not sure if I requested it this morning so we have to check the orders Oncoming attending: And her K, do you know if you replaced K this morning? Oncoming resident: I don't know. Oncoming team: The K was at 4.5 this morning. Oncoming resident: I haven't written them down</td>
</tr>
<tr>
<td>Type 2</td>
<td>Inaccurate and conflicting information: Inability of the outgoing team to provide correct information.</td>
<td>Oncoming attending: what's her Tmax? Outgoing resident: Her Tmax is 99. Her ABG was 7.33, 58, 119. And that's all on 7 L nasal cannula.</td>
</tr>
<tr>
<td>Type 3</td>
<td>Irrelevant information: Inability of the outgoing team to provide appropriate information</td>
<td>Oncoming attending: I don't understand what caused the raging traechoebronchitis, that's all. That's not what she went to the hospital with to start with. Outgoing resident: So could it still be malignancy because I know that the PAL is negative Oncoming attending: I have to tell you this the first day we couldn't see anything because there was so much blood but the repeat bronchoscopy actually was significantly improved, so you know if its malignancy it's not going to get better</td>
</tr>
<tr>
<td>Type 4</td>
<td>Incomplete or inaccurate information (from "team"): Inability of the rest of the team to provide complete and accurate information.</td>
<td>Oncoming attending: Pretty good bleeding then. I thought we are going to put SED in his arm. What happened to that plan? Oncoming resident: No response [smiles] Oncoming attending: ask IR to put a SED. If he has tumor he is at higher risk. Oncoming attending: oh did we find out about if we have pulses. We can't put that. Just check it with ultrasound. Oncoming attending: I don't think we have them. I have them in Southwest, other than putting an SED in his arm, we could only have it on one arm, the other arm we could put an IV in that...</td>
</tr>
</tbody>
</table>

* Each type of communication breakdown was mutually exclusive.
distribution of CEs; communication optimality, measured by the type of CEs (ideal vs nonideal); communication breakdowns, measured by the number of missed, incorrect, or irrelevant information from sender and team and; communication support, measured by the probability of “reject” and “request” sequences of CEs.

3.1. Communication interactivity: type/distribution of CEs

There were a greater number of CEs when using HAND-IT (mean, 725.75; SD, 125.21) than SOAP (mean, 422.75; SD, 54.21) (t_{40} = 4.56; P < 0.001) with a greater number of CEs for both attending physicians (t_{40} = 4.45; P < 0.001) and residents (t_{40} = 5.81; P < 0.001) (see Section 4 in Appendix A for the distribution of CEs).

3.2. Communication optimality: type of CEs

The HAND-IT had significantly more ideal CEs (t_{40} = 5.05; P < 0.001) and fewer nonideal CEs (t_{40} = −8.9386; P < 0.001) than SOAP. As previously explained, ideal CEs included instances where the information presented by the sender was accurate and sufficient. Use of SOAP resulted in a greater number of team responses, requiring constant team input and involvement in addressing communication breakdowns to maintain the continuity of handoff communication (t_{40} = −9.27; P < 0.001).

3.3. Distribution of communication breakdowns

We found significantly fewer communication breakdowns while using HAND-IT (mean, 0.83; SD, 0.97) than SOAP (mean, 3.78; SD, 2.62) (F_{1,80} = 45.66; P < .0001). Of these breakdowns, significantly more type 1 (F_{1,80} = 46.68; P < .0001) and type 4 (F_{1,80} = 4.93; P = .029) occurred when using SOAP. No significant differences were found in types 2 or 3 breakdowns.

3.3.1. Clinical nature of communication breakdowns

Based on the analysis of the clinical nature of the communication breakdowns, we found that there were significantly fewer breakdowns related to diagnostic evaluation (F_{1,80} = 34.66; P < .0001), management (F_{1,80} = 10.97; P < .0001) and treatment (F_{1,80} = 14.94; P < .0001) when using HAND-IT than SOAP. No significant differences were found in the nonclinical or other categories. There was also no association between the clinical type and nature of breakdowns for either tool (Fisher exact test, SOAP: P = .80; HAND-IT: P = .61) (see Section 5 in Appendix A for further details on the distribution of communication breakdowns across each tool in each category).

3.3.2. Effect of expertise on communication breakdowns

We also investigated whether communication breakdowns were associated with the level of expertise of the sender. Based on an expertise (intern, resident) × tool (SOAP, HAND-IT) 2-way analysis of variance, we found that the main effects of expertise (F_{1,80} = 4.098; P < .05) and tool (F_{1,80} = 36.072; P < .0001) were significant. Overall, interns had 0.89 more communication breakdowns than residents (95% confidence interval of the difference, 0.015–1.7 breakdowns), and the use of SOAP led to more breakdowns than the use of HAND-IT (95% confidence interval of the difference, 1.7–3.5 breakdowns). The interaction effects were not significant (F_{1,80} = 1.71; P = .195) (see Section 5 in Appendix A for further details on the distribution of communication breakdowns across interns and residents).

3.4. Communication support: distribution of reject and request sequences

Based on the TPM, we computed the transitions and their resulting probabilities between the various CEs. As expected, sender-receiver (ie, attending–resident/intern) interactions were considerably greater while using HAND-IT. As previously stated, the team response event was much more likely while using the SOAP tool (see additional figures and details regarding the transitions in Section 7 in Appendix A). Two salient sequences provide particular insights into the pattern of communication: first, there was a higher probability of reject → request transitions in the SOAP tool (Pr = 0.62; in contrast, for HAND-IT, Pr < 0.25). In HAND-IT, the prominent event after a reject event was present new information (ie, reject → present, Pr = 0.67 in contrast to SOAP, Pr < 0.25). As previously explained, a reject event occurred when the attending physician preliminarily deemed presented information as inappropriate during the handoff communication, thereby discounting the information. For SOAP, information rejection led to the physician requesting additional information, whereas for HAND-IT, even when information was rejected (usually partly), there was a higher probability that the attending physician developed (or proposed) a care plan without additional information (based on the order of the presented information in the medical hierarchical format). In other words, in HAND-IT, even when part of the information was rejected, the presented information was sufficient to develop the A&P without any new information.

Second, the sequence request → response was more prominent in HAND-IT (Pr = 0.97) than in SOAP (Pr = 0.62), providing further supporting evidence of HAND-IT’s greater ability to support the attending physician in requesting relevant information and also to support residents and interns in effectively responding to attending physicians’ requests for additional information. Table 4 provides a summary of the sequences and their associated probabilities.

4. Discussion

Based on a comparative evaluation of the communication behavior between handoff tools, we found that an indigenously developed system-based handoff tool, HAND-IT, was characterized by greater communication interactivity, greater communication optimality, fewer communication breakdowns, and greater communication support. Furthermore, we found that the communication breakdowns with HAND-IT were only marginally related to the diagnostic, treatment, or management aspects of patient care. Based on our results, we draw the following implications regarding HAND-IT for care continuity and safety during transitions: support for interactive, streamlined, and effective communication.

First, information organization with HAND-IT supported interactive communication during handoffs resulting in better common ground [54] regarding the presented patient information. In other words, HAND-IT provided support to achieve a symmetry in dialogue...
during handoff communication (ie, balance between the sender and receiver)—an instrumental factor in achieving a highly interactive, bidirectional, seamless coordination of communication that is encouraged by The Joint Commission [4].

Second, HAND-IT afforded streamlined communication by aiding in both identifying the inconsistencies between the various information pieces and interrelating these discrete pieces of information to develop an evidence-based care plan. This was achieved through a checklist-based organization of information with an assessment and plan for each body system. Such a structure helps physicians in documenting the patient case and developing a clear understanding of the causal determinants of the patient condition through diagnostic reasoning. It also encourages physicians to consider information both discretely (individual patient-related data) and holistically (the overall representation of the patient condition)—thus, assisting them in identifying potential discrepancies between clinical concepts and patient conditions that were spread across body systems.

Finally, HAND-IT supported effective communication with its system-based information organization that triggers structured seeking, organization, and documentation of communication content by the sender. It also improves the ability to sustain interactive communication between the sender and receiver—driven by more clarifications (ie, requests) leading to more conversational switches and turn taking (ie, sender responses), yet with enhanced resilience to communication breakdowns. Our results provide preliminary evidence for the use of system-based tools such as HAND-IT in providing opportunities for improved handoff communication and better care transitions.

4.1. Study limitations

There are several limitations to our study. First, the study was conducted at a single, academic MICU setting. Although a generalized application of HAND-IT would require further evaluation, we believe that the results would be directly transferable to similar academic MICU settings that use group handoffs during rounds. In other settings, setting-specific modifications of the tool (with respect to the content) may lead to comparable results. The theoretical foundation behind the design of HAND-IT was to help residents gather and organize information for effective and streamlined patient case presentation and collaborative interactions. An important takeaway from our study is the positive role of information organization and representation on communication and collaborative interactions. Externalizing pertinent information in a standardized structure that supports the intensive care unit clinical workflow can reduce the cognitive demands and the working memory requirements of information seeking, documentation, and reasoning about the discrete pieces of information while developing a plan of care [55]. Information organization also fosters better information presentation and knowledge about the patient condition due to significantly better prospective memory [56], as clinicians are encouraged to reason about and document the condition and status of the patient. Given the positive outcomes regarding communication effectiveness, we believe that these aspects would be transferable to other clinical settings.

Second, we used a nonrandomized study with only 2 teams, which may have influenced the results. Nevertheless, we had a significant number of handoffs during this period (a total of 82 handoffs across 2 tools) that provide validity for our preliminary results. Third, the nonverbal cues in communication that may have an impact on the information presented/requested were not captured. Our theoretical framework of information processing could be extended to include nonverbal cues. Fourth, we did not capture or report on the unintended consequences of the use of HAND-IT. For example, the detailed nature of HAND-IT may have potentially resulted in increased time and effort for gathering and aggregating information as well as for presenting information. However, as one of the physicians mentioned, significant time is lost, and the potential for errors is increased when the required information is not presented during rounds and residents (or other support personnel) have to scramble to find the missing information. Some of issues related to increased time can be potentially mitigated by use of integrated electronic tools that minimize the copious information entry during information aggregation. Fifth, HAND-IT was designed and developed based on longitudinal studies at this setting, and hence, the results that were achieved may be more pronounced than in another setting. We are currently expanding the use of HAND-IT in a new academic MICU setting. Finally, it is also likely that the group handoff format of the morning rounds may also have contributed to the results. As previously mentioned, our focus was on investigating how the better information gathering and organizational capabilities of HAND-IT can lead to effective and resilient handoff communication.

5. Conclusion

Our results suggest that HAND-IT supports a holistic and comprehensive head-to-toe, evidence-based assessment of a critical care patient. Such an information framework for patient data organization and documentation supported consistent, systematic, and streamlined communication with fewer breakdowns, potentially leading to better continuity and coordination of care. Although further longitudinal evaluation and evaluation in other settings are necessary for establishing the long-term viability of this tool, we believe that HAND-IT provides an initial framework for developing such extensions. Of significant interest is the potential utility of using a bottom-up, evidence-based information structure (such as the one used in HAND-IT) for information organization that can lead to more effective, interactive, and streamlined communication during transitions.

Results from this study can have significant implications for patient safety. First, as recommended by The Joint Commission, the structured format of HAND-IT not only enhances communication interactivity but also minimizes breakdowns. Second, as confirmed in previous research, handoffs are a forum that supports the function of information processing and transfer through a noisy channel (eg, [57,58]). System-based format also improves the efficiency and effectiveness of information transfer (ie, characterized by more ideal CEUs) despite the challenges and complexity of the critical care environment. Third, it sustained both senders and receivers in their interactive communication. In other words, the use of HAND-IT enhanced the ability for senders to quickly respond to receivers’ requests without the need for external information support (eg, from the team). Correspondingly, it also afforded receivers the ability to ask pertinent questions that led to speedy problem resolution and decision-making. We believe that such structured and transparent attributes enhance the resiliency of HAND-IT not only for supporting information gathering and documentation (reported elsewhere, see [37]) but also for engaging clinicians in safe communication practices.

4 During the time of the study, the research site did not use a CPOE.